import torchclass SimpleModel(torch.nn.Module):def __init__(self): super(SimpleModel, self).__init__() self.linear = torch.nn.Linear(10, 1)def forward(self, x): return self.linear(x)def test_model_overfit_single_sample():# Create a simple modelmodel = SimpleModel()# Generate random input data and targetinput_data = torch.randn(1, 10)target = torch.randn(1, 1)# Define loss function and optimizercriterion = torch.nn.MSELoss()optimizer = torch.optim.SGD(model.parameters(), lr=0.01)# Train the model on the single samplefor _ in range(100): optimizer.zero_grad() output = model(input_data) loss = criterion(output, target) loss.backward() optimizer.step()# Check if the model has overfitted (i.e., the output is close to the target)final_output = model(input_data)assert torch.allclose(final_output, target), "Model did not overfit on the single sample"